# **Integrable Ring Design**

Jeffrey Eldred, with Sergei Nagaitsev & Timofey Zolkin

Integrable Particle Dynamics in Accelerators January 2019 USPAS at Knoxville



# **Design Challenges**

Applications at Fermilab

What goes into an integrable lattice design?

What happens when there is chromaticity & momentum spread?

What happens when there is space-charge forces?

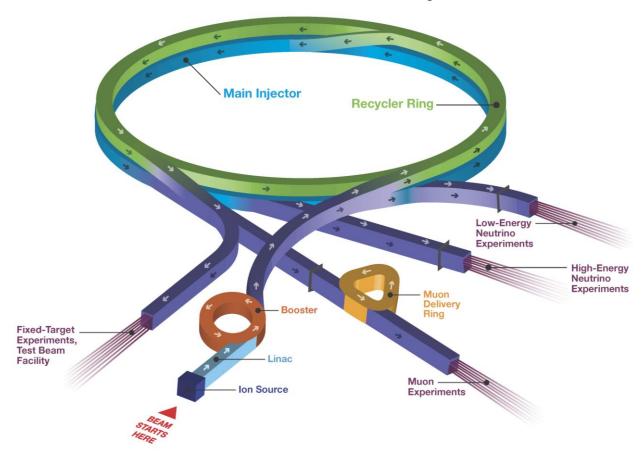


# **Motivation**



# Fermilab Upcoming Upgrades

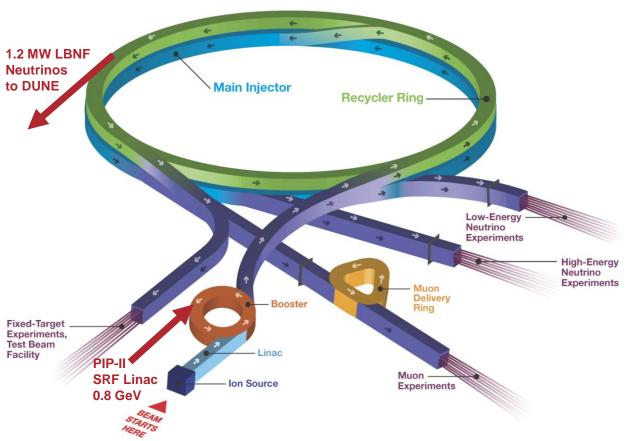
### **Fermilab Accelerator Complex**



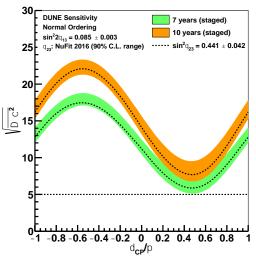


## Fermilab Upcoming Upgrades 1.2MW, ~2026

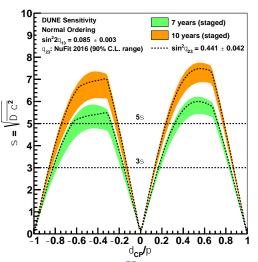
# Fermilab Accelerator Complex



#### Mass Hierarchy Sensitivity

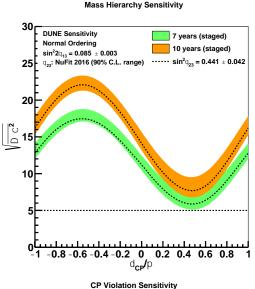


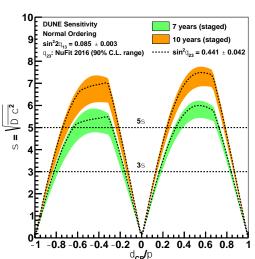
**CP Violation Sensitivity** 



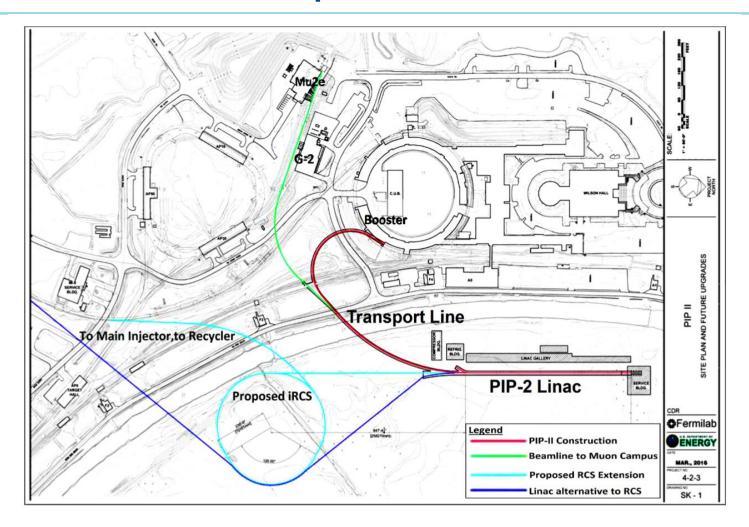
# Fermilab Upcoming Upgrades 2.4MW, ~2032





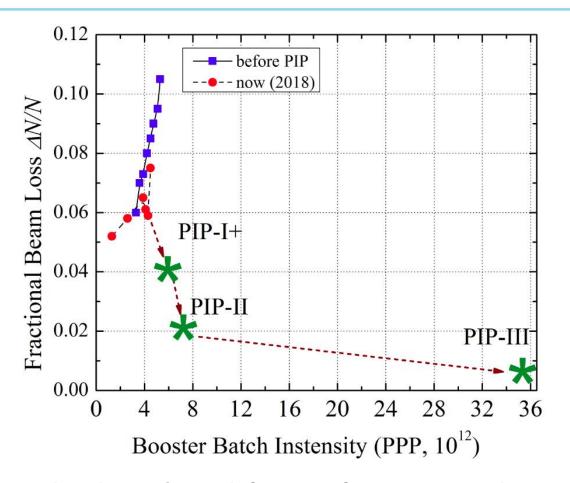


# "PIP-III" New RCS to replace Booster





## **Fermilab Loss Limits**



**Shiltsev** 

Radio-activation of particle accelerator a major operation limits. Losses must be kept within absolute limits, which mean power increases require a reduction in *loss rate*.

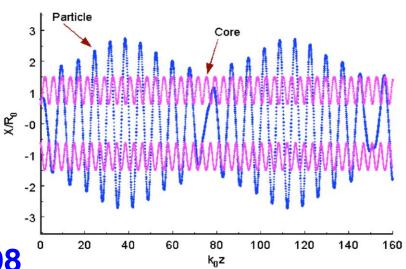


## **Core-Halo Model**

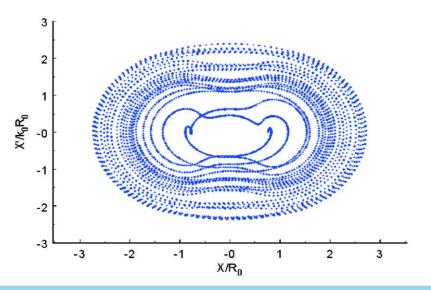
$$\frac{d^{2}R}{dz^{2}} + k_{0}^{2}R - \frac{\varepsilon^{2}}{R^{3}} - \frac{K}{R} = 0$$

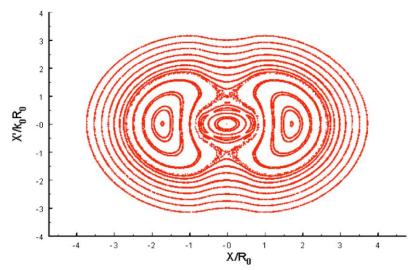
$$\frac{d^{2}X}{dz^{2}} + k_{0}^{2}X - F_{sc} = 0$$

$$F_{sc} = \begin{cases} KX/R^{2}, & |X| < R \\ K/X, & |X| \ge R \end{cases}$$



# T. Wangler et al. PRSTAB 1998





# **Betatron Tune Spread**

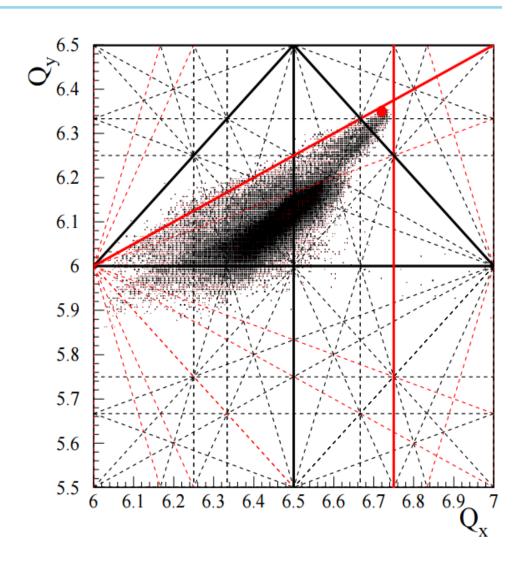
## Laslett Tune-shift

$$\Delta \nu \approx \frac{N r_0}{2\pi\epsilon_N\beta\gamma^2}FB$$

#### Solutions:

- Increase Injection Energy
- Increase Magnet Aperture
- Lattice Optics

Instead of avoiding resonance lines, can be reduce the consequences of crossing them.

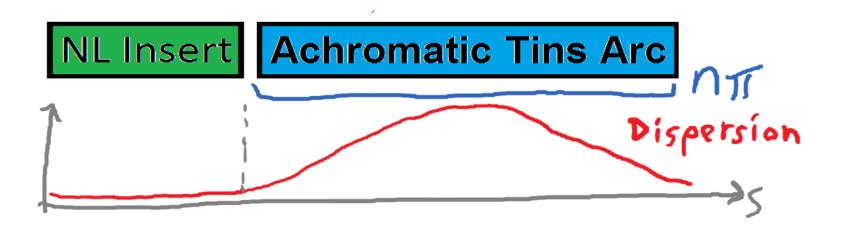




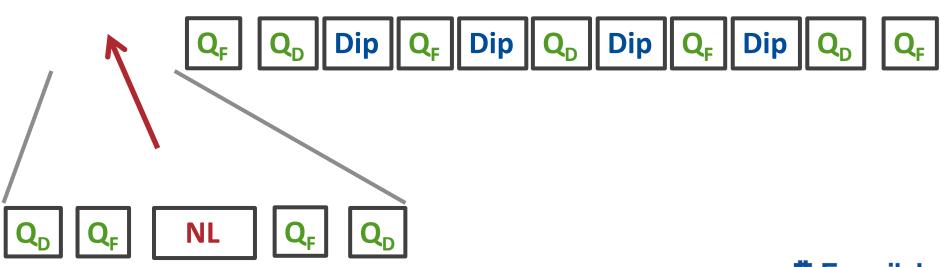
# Lattice



# **Integral Design with Periodicity**



## **Standard FODO Cell:**



# **Lattice Requirements**

## Requirements for DN Integrability:

- Pi-phase advance between nonlinear inserts
- Insertion regions dispersion-free
- Matched beta functions through nonlinear inserts

## Further Criteria related to Nonlinear Integrable Optics:

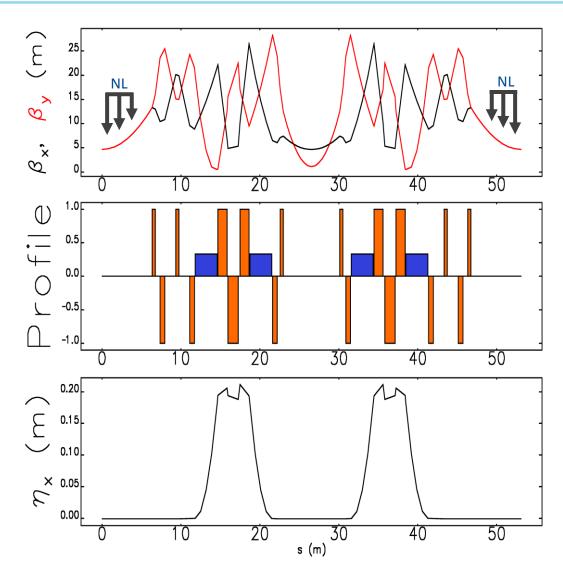
- Large phase-advance through Nonlinear Insertion
- Matched Horizontal and Vertical Chromaticity

## Criteria related to RCS Design:

- Low momentum compaction factor.
- Small maximum beta functions
- High lattice superperiodicity
- Compact circumference
- Insertions for RF, inj/ext., collimation, etc.
- Minimize required magnet strengths



# Integrable RCS Lattice design



Periodicity: 12

Circumference: **636 m** 

Bend-radius rho: 15.4 m

Max Beta x,y function: 25 m

Max Dispersion function: 0.22 m

RF Insertion length: 7.2 m, 4x 1.3m

NL Insertion length: 12.7 m

Insert Phase-Advance:  $0.3 \times 2\pi$ 

Minimum c-value: 3 cm

Beta at insert center: 5 m

Betatron Tune: 21.6

Natural Chromaticity: -79

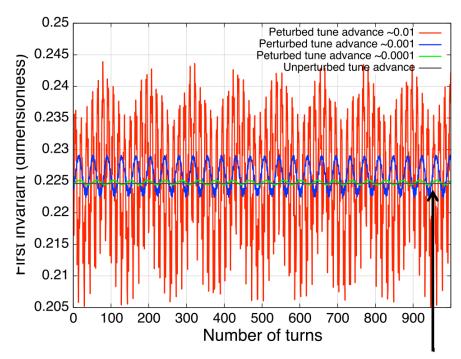
Second-order Chromaticity: **1600** 

Synchrotron Tune: 0.08



# **Perturbative Approach to Phase-errors**

Preservation of invariants, single-particle motion, phase-errors Perturbation of nonlinear t, phase-advance  $\mu$ , phase error  $\Delta \phi$ 



Tune advance 0.09 — Tune advance 0.06 — Unperturbed — Unpe

unperturbed invariants preserved to within 10<sup>-7</sup>

C. Mitchell, LBL

Perceptible: ~0.0001

Behaved: ~0.001

Stable: ~0.05



# Chromaticity



# **Chromaticity**

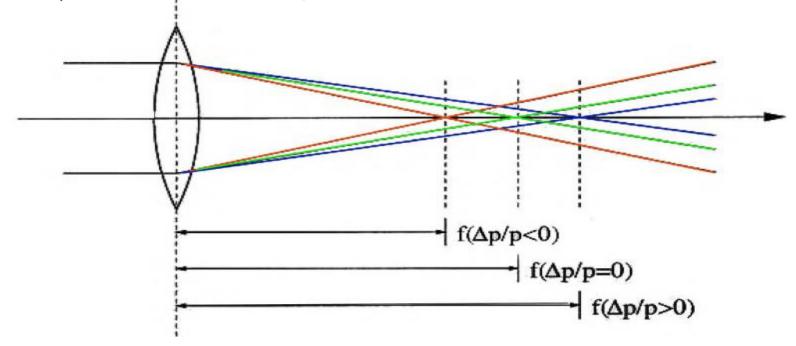
## Change in tune with momentum:

$$x_{\beta}'' + (K_x + \Delta K_x \delta) x_{\beta} = 0$$

$$K_x = \frac{1}{\rho^2} - K(s)$$
,  $\Delta K_x = -\frac{2}{\rho^2} + K(s)$ 

## **Chromaticity:**

$$C_x = \frac{\partial}{\partial \delta} \Delta \nu_x = \frac{1}{4\pi} \int_0^C \beta_x \Delta K_x(s) ds$$



## **Barletta**



## **Chromatic Shifts**

S. Webb: Danilov-Nagaitsev Hamiltonian with chromatic shifts

$$\mathcal{H}_{D-N} = \underbrace{\frac{1}{2} \left(\nu_0 + C_0(\delta)\right) \left(\hat{p}_x^2 + \hat{x}^2 + \hat{p}_y^2 + \hat{y}^2\right) + t\nu_0 \mathcal{V}(\hat{x} + D_x(\delta), \hat{y}) + \underbrace{\mathcal{L}_{D-N}}_{\mathcal{H}_0} + \underbrace{\mathcal{L}_{D-N}}_{\mathcal{L}_{D-N}} + \underbrace{\mathcal{L}_{D-N}}_{\mathcal{$$

Chromaticity does not have to be zero;

Motion is integrable if horizontal and vertical chromaticity matched.

δ is adiabatic if synchrotron tune (per nonlinear cell) is small.



# **Natural Chromaticity Matching**

Without sextupoles, chromaticity is usually large and negative

$$C_x = \frac{\partial}{\partial \delta} \Delta \nu_x = \frac{1}{4\pi} \int_0^C \beta_x \Delta K_x(s) ds$$
  $\nu_x = \int_0^C \frac{ds}{\beta_x(s)}$ 

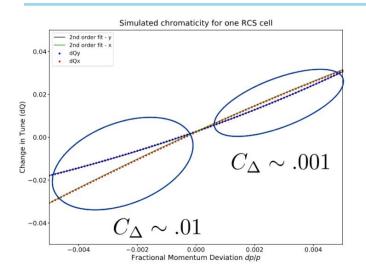
But horizontal and vertical chromaticity can still be matched by adjusting peaks in beta functions.

Chromaticity is driven by peak betas and betatron tune is driven by minimum betas, so in principle they can be fine-tuned separately.

The nonlinear chromaticity be as similar as possible



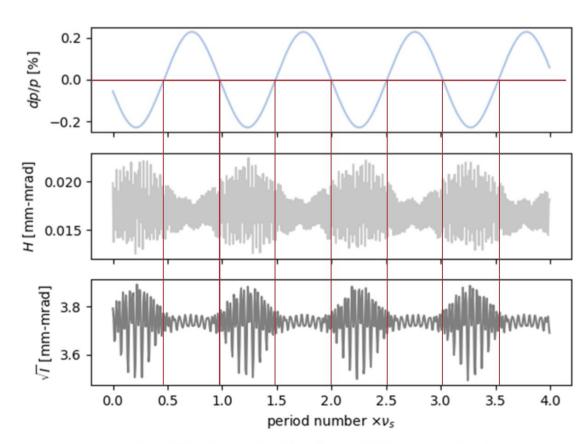
# **Chromaticity Matching in simulation**



chromaticity for an integrable RCS lattice, with regions of almost equal and unequal chromaticities

| Parameter                  | Value                 |
|----------------------------|-----------------------|
| Periodicity                | 12                    |
| Betatron Tune              | 21.6                  |
| Synchrotron Tune           | 0.08                  |
| Phase-advance over insert  | 0.3 → 2□              |
| Nonlinear Strength t-value | 0.3                   |
| Elliptic Distance c-value  | 0.14 m <sup>1/2</sup> |

Lattice parameters for an integrable RCS.

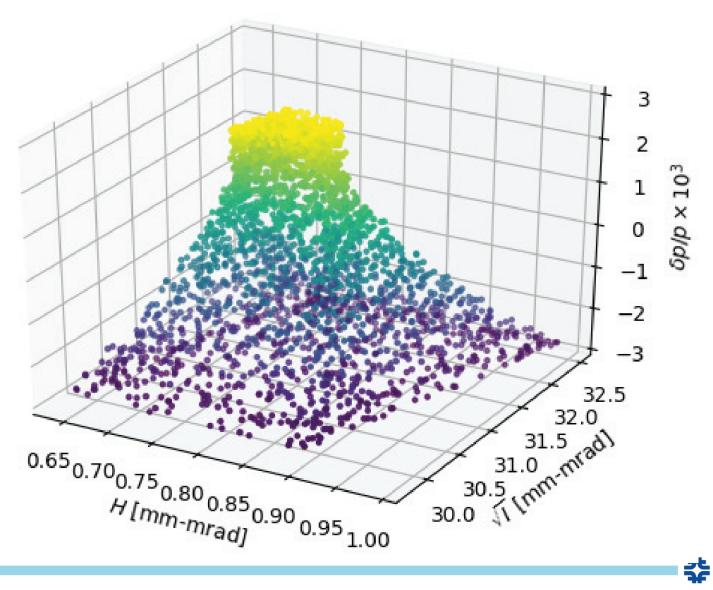


variation of the invariants of motion with the synchrotron tune, with worse behavior in the region of unequal chromaticity





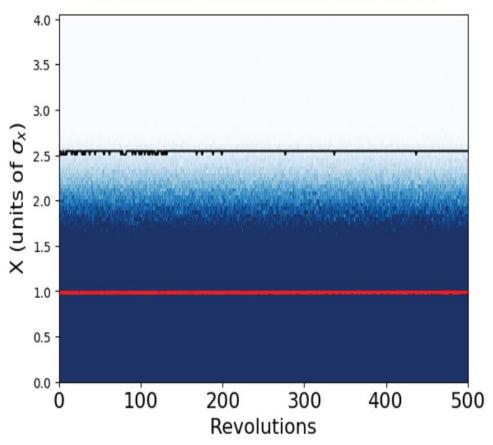
# **Chromaticity Matching in simulation**



# **Stable Motion, Massive Chromatic Tune-Spread**

| _                              | 1                                       |
|--------------------------------|-----------------------------------------|
| Betatron Tune                  | 21.6                                    |
| Linear Chromaticity            | -79                                     |
| Second-Order Chromaticity      | 1600                                    |
| Momentum Compaction            | $5.9 \times 10^{-4}$                    |
| Insertion lengths per cell     | $7.2 \text{ m}, 4 \times 1.3 \text{ m}$ |
| RF Voltage                     | 1.680 MV                                |
| Synchrotron Tune               | 0.08                                    |
| NL Insertion Length            | 12.7 m                                  |
| Phase-advance over insert      | 0.3                                     |
| Nonlinear Strength t-value     | 0.3                                     |
| Elliptic Distance c-value      | $0.14  \mathrm{m}^{1/2}$                |
| 95% Transverse Emittance       | 20 mm mrad                              |
| 95% Longitudinal Emittance     | 0.09 eV⋅s                               |
| Vertical Lattice Tune Spread   | 0.52                                    |
| Horizontal Lattice Tune Spread | 0.34                                    |
| Chromatic Tune spread          | 0.52                                    |

### Horizontal Distribution over time





# Can we use Sextupoles? Maybe

Sextupoles are the conventional tool for tackling chromaticity:

$$C_x = \frac{1}{4\pi} \int_0^C \beta_x [\Delta K_x(s) + S(s)D(s)] ds$$

Sextupoles create an undesirable nonlinear third-order resonance.

$$G_{3,0,l} \propto \int_0^C \beta_x^{3/2}(s) S(s) e^{j[3\psi_x(s)]} ds$$
  $G_{2,\pm 1,l} \propto \int_0^C \beta_x^{1/2}(s) \beta_y(s) S(s) e^{j[\psi_x(s)\pm 2\psi_y(s)]} ds$ 

Initial experiments combining strong sextupoles with nonlinear integrable optics were not successful.

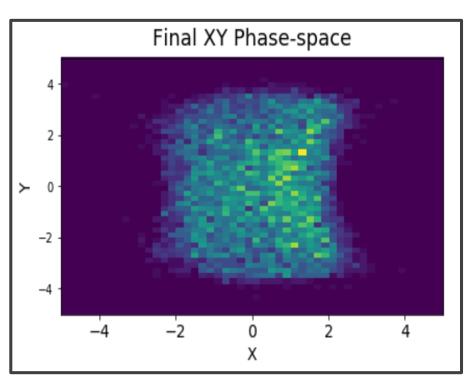
Only weak sextupoles are needed to enforce linear chromaticity matching, and no adverse effects observed from this.

Strong sextupoles should be possible with pi-phase interleaving.

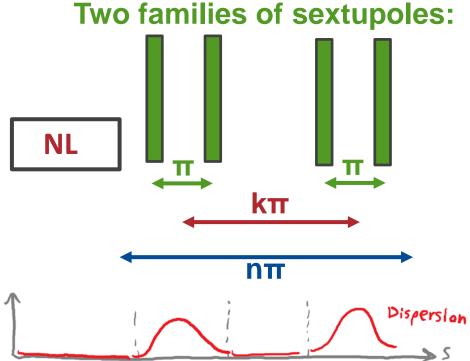


# **Sextupoles in Phase-space**

## We can avoid this:



## ...by doing this:





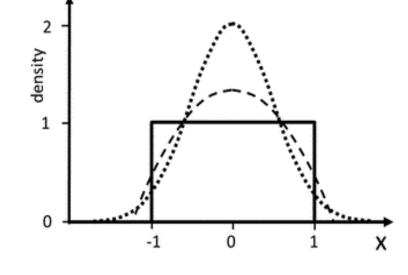
# Space-charge

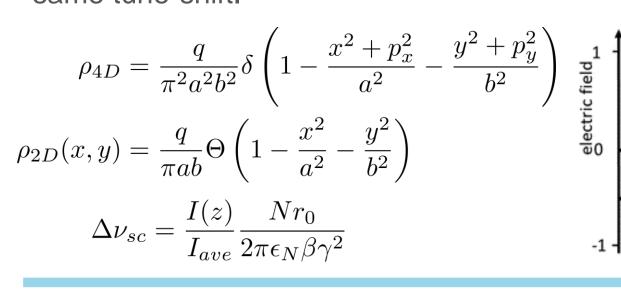


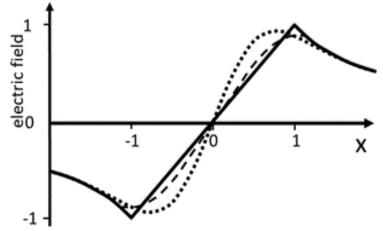
# **Linear Space-charge Forces**

For a KV-beam distribution:

- 1) All particles have the same H.
- 2) The 2D projection on the beam is a uniform ellipse.
- 3) Space-charge forces within the beam are linear.
- 4) The entire beam will undergo the same tune-shift.





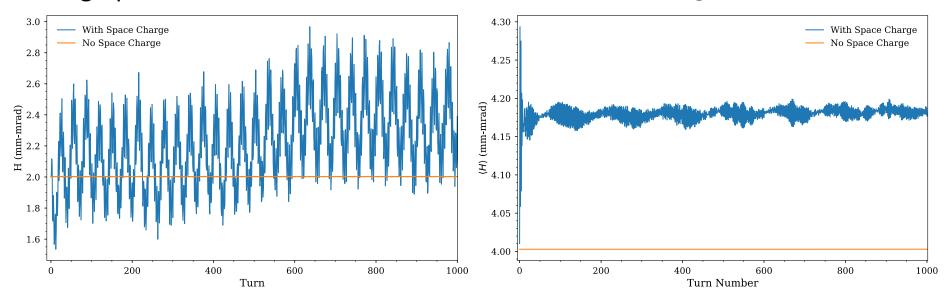




# **Space-charge breaks integrability**

#### Singe-particle invariants are broken

## Ensemble average is better behaved



## With space charge:

- 'Time independence' of Danilov & Nagaitsev theory is broken
- Both zero-current invariants now fluctuate significantly at 2 frequencies
- Some ensemble properties still appear to be approximately maintained
- Question: Is that enough?

C. Hall



# **Linear Space-charge Compensation**

Rather than use  $n\pi$  phase-advance between nonlinear inserts, anticipate the space-charge defocusing effect:

$$n\pi + 2\pi\Delta\nu \frac{L}{C} \longrightarrow n\pi$$

This means we will need a separate lattice solution for every operating intensity. But that's what we do.

For a non-KV beam distribution, we can still compensate the linear part of the space-charge defocusing effect in the core of the beam. But in that case, there will be a tune-spread with some phase-error.

More nonlinear cells help with the space-charge tune-spread, the critical parameter is the space-charge tune-spread per cell.

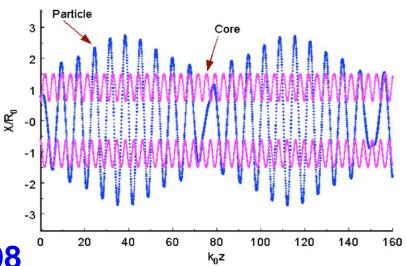


## **Performance: Halo from Mismatch Distribution**

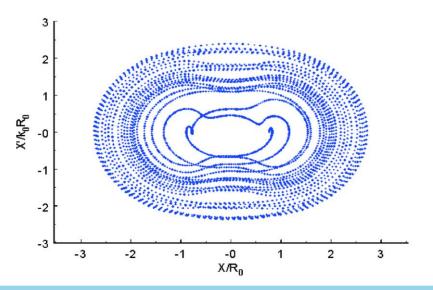
$$\frac{d^2R}{dz^2} + k_0^2R - \frac{\varepsilon^2}{R^3} - \frac{K}{R} = 0$$

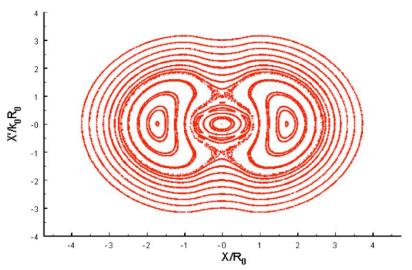
$$\frac{d^2X}{dz^2} + k_0^2X - F_{\rm sc} = 0$$

$$F_{\rm sc} = \begin{cases} KX/R^2, & |X| < R \\ K/X, & |X| \ge R \end{cases}$$



# T. Wangler et al. PRSTAB 1998





## **Performance: Halo from Mismatch Distribution**

Induce a 20% quadrupole mismatch, check for halo.

Can the nonlinear decoherence of the mismatch act to mitigate the formation of the beam halo. Trick: Create pre-halo.

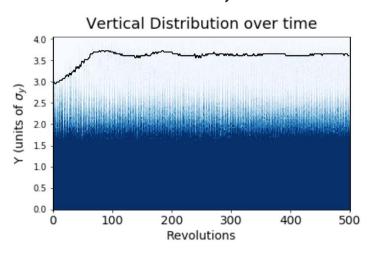
Will we encounter any other difficulty from this strong nonlinearity?

- 1 Conventional Design, Low Intensity Beam (dQ = -0.05)
- 2 Integrable Design, Low Intensity Beam (dQ = -0.05)
- 3 Conventional Design, High Intensity Beam (dQ = -0.20)
- 4 Integrable Design, High Intensity Beam (dQ = -0.20)

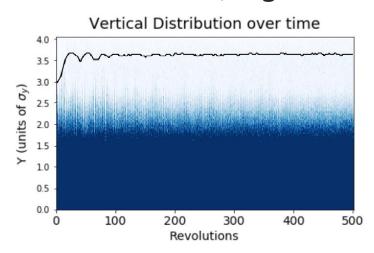


## **Transverse Beam Halo**

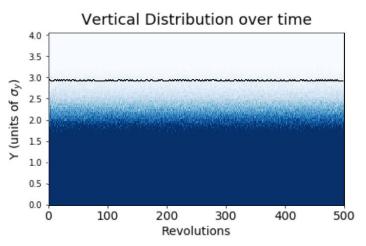
## 1 Conventional, Low Int.



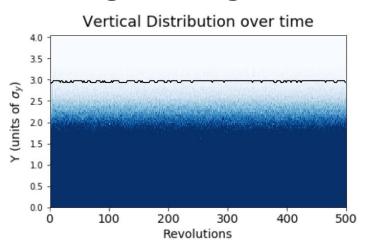
## 3 Conventional, High Int.



## 2 Integrable, Low Int.

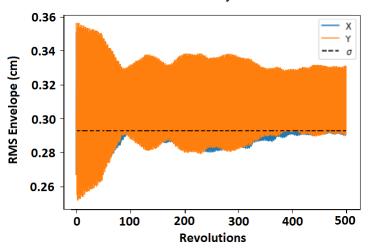


## 4 Integrable, High Int.

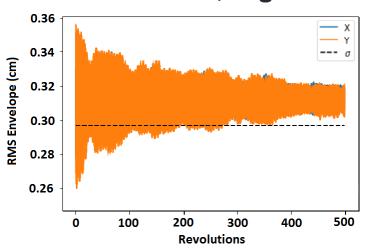


## **RMS Beam Size**

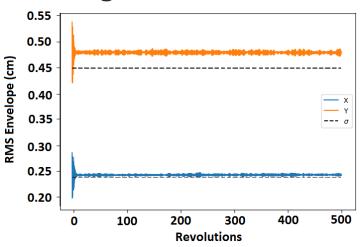
## 1 Conventional, Low Int.



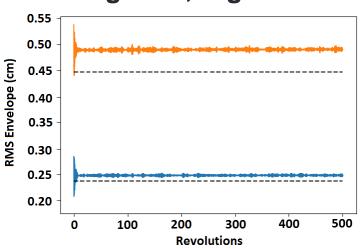
## 3 Conventional, High Int.



## 2 Integrable, Low Int.

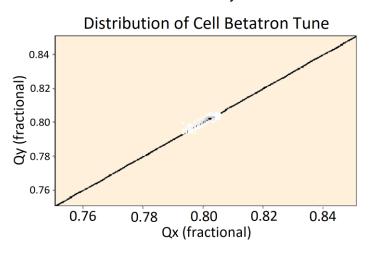


## 4 Integrable, High Int.

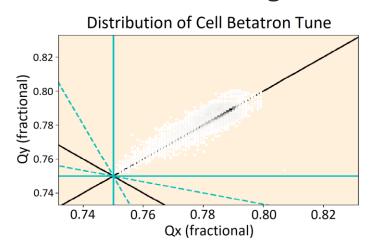


## **Cell Betatron Tune Distribution**

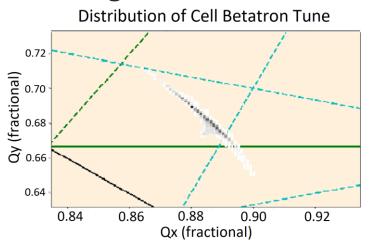
## 1 Conventional, Low Int.



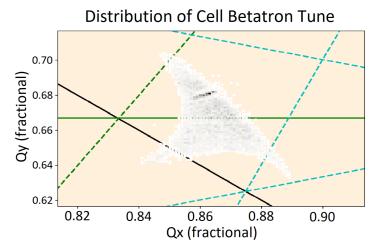
## 3 Conventional, High Int.



## 2 Integrable, Low Int.

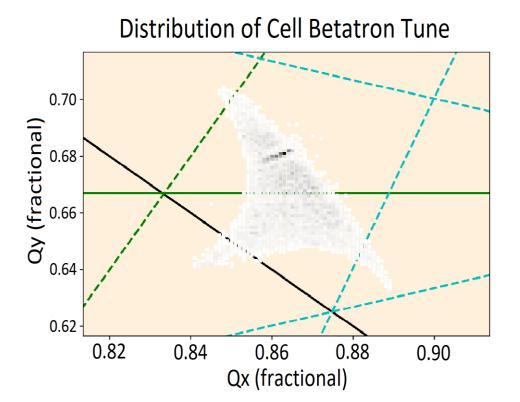


## 4 Integrable, High Int.

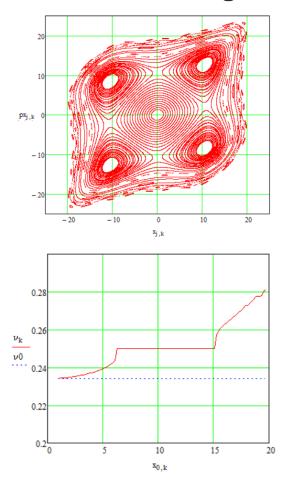


# **Mode-locking**

## Periodicity 6, dQ = 0.2



## **Mode Locking**



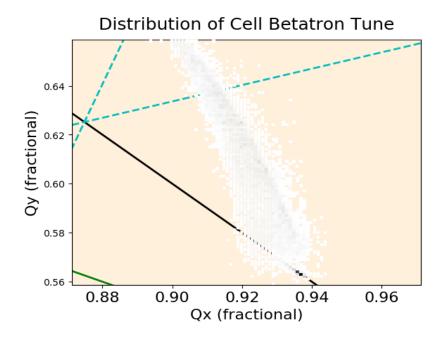


# **Higher Periodicity -> More Nonlinearity -> Higher Charge**

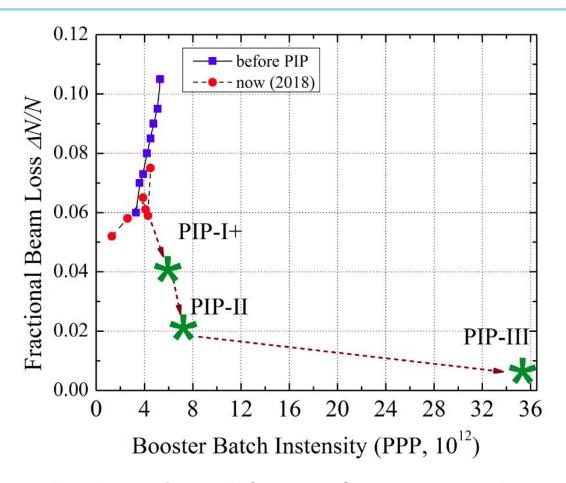
## Periodicity 6, dQ = 0.2

# Distribution of Cell Betatron Tune 0.70 0.68 0.62 0.82 0.84 0.86 0.88 0.90 Qx (fractional)

## Periodicity 12, dQ = 0.4



## **Fermilab Loss Limits**



Radio-activation of particle accelerator a major operation limits. Losses must be kept within absolute limits, which mean power increases require a reduction in *loss rate*.